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Nonlinear response theory for a relaxation experiment is used to derive classical and quantum-mechanical
equations of motion for reduced distribution functions or density matrices, respectively. The classical equations
are linear, but the quantum ones are not. The results are analyzed in the weak-coupling and separation-of-time-
scales limits.
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I. INTRODUCTION

One of the classic problems in nonequilibrium statistical
mechanics is the microscopic origin of equations of motion
for reduced distribution functions, with applications to a
wide variety of phenomena ranging from Brownian motion,
to NMR or optical spectroscopies, etc. The earliest deriva-
tions of these reduced equations focused on hierarchical
methods like the Bogoliubov-Born-Green-Kirkwood-Yvon
�BBGKY� hierarchy to derive the Boltzmann equation �1�,
Fokker-Planck equations, or Bloch-Redfield equations �2,3�.
A large number of techniques have been applied to these
problems, including various perturbation theories �2,3�, pro-
jection operator methods �4–11�, path-integral methods �12�,
etc., with the projection operator approach perhaps being the
most popular.

In the projection operator approaches, using the tech-
niques pioneered by Zwanzig �13� and Mori and co-worker
�14,15�, a generalized Langevin equation is obtained. The
derivations depend on several assumptions: namely, �i� the
choice of the projection operator; �ii� the choice of the initial
distribution �this often linked to the first assumption�; �iii� an
assumption that there is a separation of time scales between
the dynamics of the reduced system and the rest, thereby
resulting in a random forcing term who’s correlations decay
on a short time scale �this is sometimes referred to as the
“Markov” assumption�; and finally, �iv� that the averages of
the random force in general decays on a fast time scale, even
for initial distributions other than that assumed in the deriva-
tion. What results, ignoring the random force, is a linear,
generalized Fokker-Planck equation. Some of the differences
arising from these choices, which seem to disappear in the
weak-coupling, Markov limit, but which result in other prob-
lems, are discussed in Ref. �8�.

In this work, a general derivation of such equations of
motion is presented based on response theory for a relaxation
experiment; i.e., a fairly general nonequilibrium initial state
is assumed and allowed to freely relax back to equilibrium.
The average reduced distribution functions and their time
derivatives are calculated in terms of the parameters describ-
ing the initial distribution, and subsequently, these are elimi-
nated in favor of the instantaneous reduced distribution,
thereby resulting in a closed equation of motion. No assump-
tions about projection operators are made, although expres-
sions that contain what look like Mori-Tokyuama projected
quantities �15� arise naturally. Both classical and quantum

systems will be examined. What is perhaps most interesting
is the appearance of nonlinear terms in quantum-mechanical
systems.

For classical systems, consider a system whose phase
space can be decomposed into “subsystem” and “bath” parts,
described by the phase vectors XS and XB, respectively, each
containing their respective generalized coordinates qi and
conjugate momenta pi. For quantum systems, it is assumed
that the Hilbert space describing the entire system can be
decomposed into the subspace of interest and its orthogonal
complement, spanned by orthonormal basis vectors �xs� and
�xB�, respectively, where xS and xB denote the quantum num-
bers for the chosen representation. In particular, note the
completeness relations

�
x�

�x���x�� = 1�, � = S,B , �1.1�

where 1S�B� is the identity operator in the subsystem �bath�
space.

The total Hamiltonian governing the system is written as

H 	 HS + HB + �HS,B, �1.2�

where HS�B� depends only on XS�B� �classically� or �xS�B��
�quantum mechanically�; all interactions between the sub-
system and bath are contained in HS,B, whose strength is
characterized by �. The system’s dynamics is governed by
the Liouville equation, with Liouville operator

iL 	 
 �. . . ,H� , classically,

�. . . ,H�/i� , quantum mechanically,



	 iLS + iLB + �iLS,B, �1.3�

where �…, …� is a Poisson bracket �16�, �…, …� is a com-
mutator, and the decomposition into subsystem, bath, and
interaction parts follows trivially from Eq. �1.2�. The reduced
distribution functions can be obtained by averaging

A�x,t� 	 �„x − XS�t�… , �1.4a�

classically, where ��x� is a Dirac delta function and where
X�t� is the phase point at time t given that it was X at t=0.
Quantum mechanically, this becomes

A�xS,xS�,t� 	 eiLt��xS���xS� � 1B� , �1.4b�

where the S subscript will be dropped when the context is
obvious.
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In order to proceed, many authors start manipulating Li-
ouville’s equation for reduced distribution functions. In re-
sponse theory, a slightly different approach can be taken—
namely, to consider a relaxation experiment where the
system and bath relax to equilibrium from an adiabatically
prepared distribution. The exact form of this distribution is,
of course, not really known, but as was argued in Ref. �17�,
it should not really matter as long as �i� a well-posed, closed,
set of phenomenological equations of motion exist for some
reduced set of variables A and �ii� the distribution gives ex-
pected initial average values of the phenomenological vari-
ables. To this end, it was assumed that the initial distribution
has the form

��t = 0� = �
e−��H−A�F�

�e�A�F�
, classically,

e−��H−A�F�

Tr�e��H−A�F��
, quantum mechanically,�

�1.5�

where �	1 /kBT, �¯� denotes an equilibrium canonical av-
erage, “�” denotes a sum over the various variables con-
tained in A and concomitant integrations, if necessary, and
the F’s are chosen to give the correct initial values of a�t
=0�, the average of the dynamical variables, using Eq. �1.5�.
The F’s can viewed as real external fields that couple to the
A’s in preparing the system, or simply as Lagrange multipli-
ers that enforce constraints on the initial averages in a maxi-
mum entropy formalism. In addition, note that no decoupling
or factorization between the subsystem and bath degrees of
freedom is assumed.

In the usual treatment �17�, Eq. �1.5� is used to generate
series expansions for a�t� and ȧ�t�, the average and average
rate of change of the dynamical variables, respectively, after
which F is eliminated, thereby resulting in a nonlocal, non-
linear equations of motion. This idea will be applied here for
a special choice of variables—i.e., for the generator of the
subsystem’s reduced distribution.

With these preliminary remarks, the derivations of classi-
cal and quantum-mechanical reduced equations of motion
will be presented in Secs. II and III, respectively. One sur-
prising result is that the classical equations are linear, ex-
actly, while the quantum ones are not. Section IV contains
some concluding remarks.

II. CLASSICAL SYSTEMS

When Eq. �1.4a� is used in �1.5�, it follows that the non-
equilibrium average of any mechanical quantity B�t� is

�B�t��NE =
�B�t�e�A�F�

�e�A�F�
=

�B�t�A�x�� � e�F�x�

�A�x�� � e�F�x� , �2.1�

where the last equality follows trivially from the definition of
the � function. The average in the denominator is just the
equilibrium reduced distribution function—i.e.,

�eq�x� =� dXB

�e−�H�XS=x

Q
	 e−��A�x�, �2.2�

where Q is the canonical partition function �without the usual
h3NN! corrections� and �A�x� is the generalized potential of
mean force for the subsystem in configuration x or, equiva-
lently, the Helmholtz free energy required to put the sub-
system into configuration x.

By setting B=A and t=0 in Eq. �2.1�, it follows that

�NE�x,t = 0� =
exp�− �„�A�x� − F�x�…�

� dx exp�− �„�A�x� − F�x�…�
, �2.3�

which gives

F�x� = �A�x� + kBT ln �NE�x,t = 0�

+ kBT ln�� dxe−�„�A�x�−F�x�…� . �2.4�

This can be used to rewrite Eq. �2.1� as

�B�t��NE = �B�t���x − XS�� � e��A�x��NE�x� , �2.5�

where, henceforth, the time arguments will be suppressed
when t=0. Equation �2.5� is exact, given the assumption
about the form of the initial distribution �cf. Eq. �1.5�� and
the choice of variable �cf. Eq. �1.4a��. Remarkably, it is also
linear, even though no assumption about being near equilib-
rium has been made; indeed, it is basically a statement or
proof of the Onsager regression hypothesis.

In order to proceed, we need to rewrite Eq. �2.5� in terms
of �NE�x , t�. Since Eq. �2.5� is linear, this can be done either
in the time or frequency domains; here, the former will be
considered. By using Eq. �2.5� for B�t�=�(x−XS�t�), it fol-
lows that

�NE�x� = e−��A�x���„x − XS�t�…��x� − XS��−1 � �NE�x�,t� ,

�2.6�

where an inverse kernel has been defined as

� dx���„x − XS�t�…��x� − XS��−1��„x� − XS�t�…��x� − XS��

= ��x − x�� . �2.7�

Note that Eq. �2.7� implies that

� dx���„x − XS�t�…��x� − XS��−1e−��A�x�� = 1. �2.8�

In addition, when t=0 it is easy to see that

���x − XS���x� − XS��−1 = e��A�x���x − x�� . �2.9�

By using Eq. �2.6� in �2.5� it follows that

�B�t��NE = �B�t���x − XS��

� ��„x − XS�t�…��x� − XS��−1 � �NE�x�,t�

= �B��x − XS��e��A�x� � �NE�x,t� �2.10a�
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− �
0

t

ds�B‡�s�
d��x − XS�

dt
�

� ��„x − XS�s�…��x� − XS��−1 � �NE�x�,t� , �2.10b�

where

B‡�t� 	 B�t� − �B�t���x� − XS�� � ��„x� − XS�t�…��x� − XS��−1

� �„x� − XS�t�… . �2.11�

In obtaining Eq. �2.10b� the time correlation functions were
written as their t=0 values plus the integral of the time de-
rivative. In addition, the fact that the equilibrium averages
are stationary in time was used to move the time derivatives
to the right. Note that �B��x−XS��e��A�x� is just the condi-
tional average of B given that the subsystem is in configura-
tion x. In addition, B‡�t� is orthogonal to the subspace in the
sense that

�B‡�t���x − XS�� = 0 �2.12�

and, indeed, Eq. �2.11� has the same form as the projection
operators first introduced by Tokyuama and Mori �15�. Per-
haps it is more important to note that �cf. Eq. �2.10a�� the
second term in B‡�t� subtracts the macroscopic, average be-
havior, applied to the microscopic variable, and thus, B‡�t�
represents the part of B not described by the average phe-
nomenology. For systems with a so-called separation of time
scales, this implies that B‡�t� should vary on a short time
scale. Henceforth, B‡ will be called the random or dissipative
part of B.

The time derivative appearing in Eq. �2.10b� is easily ex-
pressed in terms of the Liouville operators �cf. Eq. �1.3�� and
thus

�B�t��NE = �B��x − XS��e��A�x� � �NE�x,t�

− ��
i�S
�

0

t

ds��B‡�s���x − XS�
�HS,B

�pi
� �

�qi

− �B‡�s���x − XS�
�HS,B

�qi
� �

�pi
�

� ��„x − XS�s�…��x� − XS��−1 � �NE�x�,t� ,

�2.13�

where the terms arising from iLS vanish due to Eq. �2.12� as
do those arising from iLB. At equilibrium, Eq. �2.8� implies
that each of the terms in the sum in Eq. �2.13� vanishes,
while the first term becomes the exact equilibrium average
�B�.

The macroscopic equation of motion for the reduced dis-
tribution function is now easily obtained by letting B�t�
= iL�(xS−XS�t�). In this case, it is easy to show that the first
term on the right-hand side of Eq. �2.13� becomes

��iL��x − XS����x� − XS��e��A�x�� � �NE�x�,t�

= − ��NE�x,t�,�A�x�� 	 − iLef f�NE�x,t� , �2.14�

where �A�x� is the effective Hamiltonian and free energy
defined in Eq. �2.2�. These terms vanish at equilibrium, as
expected.

The dissipative terms are slightly more complicated. It is
easy to show that �iLS��xS−XS�t���‡=0. The nonzero contri-
butions can be written as

�2 �
i,j�S

�,	=p,q

�
0

t

ds
�

��i
L�i,	j

�x,x�;s�
�

�	 j�

� ��„x� − XS�s�…��x� − XS��−1 � �NE�x�,t� , �2.15�

where a generalized Onsager coefficient is defined as

L�i,	j
�x,x�;s� 	 
 ��� �HS,B

��̄i
��s��„x − XS�s�…�‡

���x� − XS�
�HS,B

�	̄ j
� , �2.16�

where

�̄ 	 
q for � = p ,

p for � = q ,

 �2.17�

and where the plus sign is used if �=	 and the minus oth-
erwise.

Thus, by combining Eqs. �2.14� and �2.15� a generalized
Fokker-Planck equation is obtained—namely,

��NE�x,t�
�t

= − iLef f�NE�x,t�

+ �2 �
i,j�S

�,	=p,q

�
0

t

ds
�

��i
L�i,	j

�x,x�;s�
�

�	 j�

� ��„x� − XS�s�…��x� − XS��−1 � �NE�x�,t� .

�2.18�

Equation �2.18� is exact, given the assumed form of the ini-
tial distribution. Again, note that each term in Eq. �2.18�
vanishes at equilibrium. Note that it is nonlocal in x and has
time-dependent coefficients; as such, anomalous diffusion
phenomena �18� could arise if L�i,	j

�x ,x� ;s� does not decay
rapidly in time or in spatial separation �e.g., as would prob-
ably be the case near a critical point, or in some sort of
disordered phase�. For example, if the reduced subspace was
the position of a tagged particle, this would generate a gen-
eralized diffusion equation, which, when Fourier trans-
formed, has the form

���k,t�
�t

= − k2D�k,t���k,t� ,

which has the solution ��k , t�=exp�−�0
t dsk2D�k ,s����k ,0�.

Next, consider the standard case where there is a separa-
tion of time scales, specifically where the system evolves on
a slower time scale than the bath and where the coupling is
weak. In this case, the dissipative correlation functions that
appear in Eq. �2.16� are expected to decay on a fast-time
scale, one in which the subsystem remains frozen for the
most part. In addition, � is assumed to be small. When both
of these conditions hold, the time dependences associated
with XS�s� can be ignored for times long compared to the
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bath correlation times, but small compared to the sub-
system’s, and Eq. �2.18� can be rewritten, to O��2�, as

��NE�x,t�
�t

= − iLef f�NE�x,t�

+ �2 �
i,j�S

�,	=p,q

�

��i
L�i,	j

�x�e−��A�x��e��A�x��NE�x,t�
�	 j

.

�2.19�

Henceforth,

L�i,	j
�x� 	 
 �

0

�

ds��� �HS,B

��̄i
��s��‡�HS,B

�	̄ j
�

x
,

�2.20�

where �¯�x denotes an conditional average with the sub-
system frozen in configuration x and

�� �HS,B

��̄i
��s��‡

	 � �HS,B

��̄i
��s� − � �HS,B

��̄i
�

x
, �2.21�

i.e., the fluctuations in the generalized coupling forces in the
presence of the frozen subsystem. Note that the separation-
of-time-scales assumption allows the upper limit of the inte-
gral to be extended to infinity for t
�bath, where �bath is a
typical bath relaxation time.

Another interesting case is that where the subsystem-bath
interaction is weak and separable �in the integral-equation
sense�, specifically where

HS,B = �
k

S�k��XS�B�k��XB� , �2.22�

where the sum over k could be replaced by an integral �e.g.,
as in the case of a Fourier representation of the generalized
forces�. Since the dissipative term in Eq. �2.18� is explicitly
O��2�, to that order the system-bath coupling can be ignored
and the generalized Onsager coefficient �cf. Eq. �2.16�� be-
comes

L�i,	j
�x,x�;s� � 
 �

k,k�

� �S�k��x�

��̄i
�� �S�k���x��

�	̄ j�
���„x

− XS�s�…��x� − XS���B̂�̄i

�k��s�B̂	̄j

�k��� ,

�2.23�

where the B̂ denotes the deviation of B from its equilibrium
average. Clearly Eq. �2.23� will further simplify when there
is a separation of time scales �with the bath fluctuations de-
caying faster�. In this case, Eq. �2.20� becomes

L�i,	j
�x� � 
 �

k,k�

� �S�k��x�

��̄i
�� �S�k���x�

�	̄ j

��
0

�

ds�B̂�̄i

�k��s�B̂	̄j

�k��� .

�2.24�

Classical Brownian motion

As an example, consider the Brownian motion of a heavy
particle in a bath of light ones, one of the workhorse prob-
lems in statistical mechanics. In this case,

HS =
P2

2M
, HS,B = �

j�B

uSB�R − r j� , �2.25�

where R and P denote the position and momentum of the
Brownian particle, M is its mass, and a pairwise additive,
velocity-independent potential has been assumed for the in-
teraction with the bath. With this choice, assuming that the
system is uniform at equilibrium, it follows that �A�R ,P�
= P2 /2M up to unimportant additive constants. Evaluating
the various terms in Eq. �2.18� results in the following gen-
eralized Fokker-Planck equation for the Brownian particle:

��NE�R,P,t�
�t

= −
P

M
·
��NE�R,P,t�

�R

+ �2�
0

t

ds
�

�P
· LJP,P�s� ·

�

�P�

� ��„x� − XS�s�…��x� − XS��−1 � �NE�R�,P�,t� ,

�2.26�

where

LJP,P�s� 	 ��FB�s��„x − XS�s�…�‡FB��x� − XS�� , �2.27�

where FB is the force exerted on the Brownian particle by the
bath. At this point, this exact expression differs from that
obtained by Romero-Rochin and Oppenheim �6� using pro-
jection operator techniques. It is not clear if the differences
are more than formal and, in part, stem from the choice of
staying completely in the time domain, leading to differences
analogous to those arising between the Zwanzig-Mori
�13,14� and Tokuyama-Mori �15� formalisms. Of course, no
separation of weak-coupling and time-scale assumptions has
been made yet; when these are invoked �cf. Eq. �2.19��, Eq.
�2.26� becomes

��NE�R,P,t�
�t

= −
P

M
·
��NE�R,P,t�

�R

+ �2D
�

�P
· � �

�P
+

�

M
P��NE�R,P,t� ,

�2.28�

where

D 	
1

3
�

0

�

ds�FB�s� · FB�x, �2.29�

which is the usual result �4,6�.

III. QUANTUM SYSTEMS

Moving from classical to quantum dynamics introduces
several changes. The simplest are basically notational as was
detailed in the Introduction. For relaxation experiments, it is
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still reasonable to assume that the initial density matrix has
the form given by Eq. �1.5�, simply replacing the distribution
function by the density matrix � and phase-space integrations
by quantum mechanical traces, and where the “�” now de-
notes integrations �or sums� over both xS and xS� �cf. Eq.
�1.4b��. With this initial form of the density matrix, it follows
that

�B�t��NE =
Tr„B�t�e−��H−A�F�

…

Tr�e−��H−A�F��
, �3.1�

where B�t�=eiHt/�Be−iHt/� is a Heisenberg operator. This
leads to the first difference with the classical development;
namely, since A and H do not commute in general, the sec-
ond equality in Eq. �2.1� will not hold and nonlinear correc-
tions to the quantum-mechanical analog of Eq. �2.5� can
arise. In order to examine this in detail, note the well-known
operator identity

e−��H−A�F� = e−�H + �
0

�

dse−��−s�HA � Fe−s�H−A�F�,

�3.2�

which can be iterated to give a formal expansion of the dis-
tribution function around equilibrium. This is used to rewrite
Eq. �3.1� as

�B�t��NE � �B� + ��BK�t�A�� � �F + �
0

�

ds�
0

s

ds�

���B�t − i���A�− i�s�A�− i�s���� *
*FF

+ O�F3� , �3.3�

where ��¯�� denote cumulant averages �19� and

BK�t� 	 �
0

1

dsB�t − i��s� �3.4�

is the Kubo transform of the Heisenberg operator B�t� �20�.
Equation �3.3� is the usual nonlinear response theory re-

sult for a relaxation experiment. At this point the F’s are

eliminated in favor of �A�t��NE. In Ref. �17� this was done by
treating the nonlinear terms in Eq. �3.3� as perturbations and
iterating, thereby obtaining an expansion in powers of
�A�t��NE− �A�. Unfortunately, this approach cannot be ap-
plied without modification since, for the choice of A given
by Eq. �1.4b�, ��AK�t�A�� is singular, i.e.,

� dx1��AK�x,x�;t�A�x1,x1��� = 0 �3.5�

�cf. Eq. �1.1��, and implies that the F�s are only determined
up to an additive constant �cf. Eq. �3.1��. Instead, Eq. �3.3�,
for B=A, is rewritten as

�F�x1,x2� � − ��x1 − x2��1 − �eq � �F�

+ �AK�x1,x2;t�A�x3,x4��−1 � ��NE�x3,x4,t�

− �
0

�

ds�
0

s

ds���A�x3,x4;t − i���

�A�− i�s�A�− i�s���� *
*FF� + O�F3� , �3.6�

where, in analogy to Eq. �2.7�, the inverse kernel satisfies

� dx3x4�AK�x1,x2;t�A�x3,x4��−1�AK�x3,x4;t�A�x5,x6��

= ��x1 − x5���x2 − x6� . �3.7�

Note that in obtaining Eq. �3.6� the identity

� dx3x4�AK�x1,x2;t�A�x3,x4��−1�eq�x3,x4� = ��x1 − x2� ,

�3.8�

which follows from Eqs. �3.7� and �1.1�, was used. Equation
�3.8� is the quantum-mechanical analog of Eq. �2.8�.

By treating the quadratic term in Eq. �3.6� as a perturba-
tion, iterating, and using the result in Eq. �3.3�, the latter
becomes

�B�t��NE � �BK�t�A� � �AK�t�A�−1 � �NE�t� + �
0

1

ds�
s

1

ds���B‡�t�A�i��s�A�i��s���� *
*��AK�t�A�−1 � �NE�t����AK�t�A�−1 � �NE�t��

+ O�F3� , �3.9�

where

B‡�t� 	 B�t� − �BK�t�A� � �AK�t�A�−1 � A�t� . �3.10�

Note that unlike its classical analog �cf. Eq. �2.11��, B‡�t� is
not orthogonal to A �BK

‡ �t� is�, although �B‡�t��=0. The first
term in Eq. �3.9� is the expected generalization of the clas-
sical result, Eq. �2.10a�, by the introduction of the Kubo

transforms. By using Eq. �3.8�, it is easy to show that this
term becomes �B� at equilibrium. Similarly, the quadratic
terms can be shown to vanish at equilibrium and are second
order in deviations from equilibrium. Perhaps more interest-
ing is that they are purely quantum mechanical in origin.

By repeating the steps that led to Eq. �2.10b�, Eq. �3.9�
can be rewritten as
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�B�t��NE � �BKA� � �AKA�−1 � �NE�t� − �
0

t

ds�BK
‡ �s�Ȧ‡� � �AK�s�A�−1 � �NE�t�

+ �
0

1

ds�
s

1

ds���B‡�t�A�i��s�A�i��s���� *
*��AK�t�A�−1 � �NE�t����AK�t�A�−1 � �NE�t�� + O�F3� . �3.11�

As in Sec. II, Eq. �3.11� can be used to derive an equation of motion for the reduced density matrix. The A’s obey the
quantum-mechanical Heisenberg equation

�A

�t
=

�A,H�
i�

	 iLA; �3.12�

hence, Eq. �3.11� implies that

��NE�t�
�t

� �ȦKA� � �AKA�−1 � �NE�t� − �
0

t

ds�ȦK
‡ �s�Ȧ‡� � �AK�s�A�−1 � �NE�t�

+ �
0

1

ds�
s

1

ds���Ȧ‡�t�A�i��s�A�i��s���� *
*��AK�t�A�−1 � �NE�t����AK�t�A�−1 � �NE�t�� + O�F3� , �3.13�

where note that the second- and higher-order corrections in
deviation from equilibrium all vanish in the classical limit.

The linear terms will be examined first. If the potential is
decomposed as in Eq. �1.2�, it is easy to see that

�„�A�x1,x2�,HS�…K�t�A�x3,x4�� � �AK�x3,x4;t�A�x5,x6��−1

= ��x1�HS�x5���x2 − x6� − �x6�HS�x2���x1 − x5�� , �3.14�

which, when used in the first term on the right-hand side of

Eq. �3.9� with B= Ȧ, gives the quantum Liouville equation
for an isolated subsystem—i.e.,

��NE�t�
�t

= − iLS�NE�t� . �3.15�

In addition, by using Eqs. �3.12� and �3.14�, it is easy to see

that the explicit contribution of HS to Ȧ‡ �cf. Eq. �3.10��
vanishes, as it must if there are to be no corrections to an
isolated subsystem’s Liouville equation �cf. Eq. �3.15��.
Also, the explicit contributions of HB to Ȧ obviously vanish,
and hence, what remains are the contributions arising from
HS,B—namely,

�

i�
���A,HSB��K�t�A� � �AK�t�A�−1 �3.16�

and

Ȧ‡�t� =
�

i�
���A,HSB���t�

− ���A,HSB��K�t�A� � �AK�t�A�−1 � A�t�� .

�3.17�

Unfortunately, Eq. �3.16� does not simplify significantly,
even for t=0, because of the Kubo transform. In order to deal
with this problem, as in Ref. �7�, the weak-coupling limit
�i.e., ��1� to O��2� will be examined for a separable HS,B of
the form given in Eq. �2.22�, generalized to quantum-
mechanical operators in the S and B subspaces. By noting
that

esH � esH0 + ��
0

s

ds�e�s−s��H0HS,Bes�H0 + O��2�

�3.18a�

and eiLt � eiL0t + ��
0

s

dt�eiL0�t−t��iLS,BeiL0t� + O��2� ,

�3.18b�

where H0	HS+HB, etc., it follows that

�

i�
���A,HS,B��KA� � �AKA�−1 �

�

i���
�

��x1�S����x5���x2 − x6� − �x6�S����x2���x1 − x5���B����

− �
0

� ds

�
�

0

s

ds���Ȧ0
‡�− i�s�HS,B�− i�s�� + HS,B�− i�s�Ȧ0

‡�− i�s���A� � �AKA�−1� + O��3� ,

�3.19�
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where all averages on the right-hand side are evaluated for
the noninteracting subsystem-bath Hamiltonian,

Ȧ0
‡�x1,x2� 	

�

i�
�
�

�A�x1,x2�,S����B̂���

=
�

i�
�
�,x

��x1�S����x�Ax,x2
− Ax1,x�x�S����x2��B̂���,

�3.20�

which is just Eq. �3.17� to leading order in � for the assumed
HS,B. The remaining linear term in Eq. �3.13� is explicitly
O��2�, and thus

��NE�t�
�t

� − iLef f�NE�t� − � �

i�
�2

�
�,��

��
0

� ds

�
�

0

s

ds����A,S����

��− i�s�S�����− i�s�� + S����− i�s��A,S�����

��− i�s���A� � �AKA�−1�B̂����− i�s�B̂�����− i�s���

+ �
0

t

dt��
0

� ds�

�
��A,S�����t� − i�s��

��A,S������ � �AK�t��A�−1

��B̂����t� − i�s��B̂������ � �NE�t� + O��3� , �3.21�

where iLef f is an effective subsystem Liouville operator de-
fined in terms of an effective Hamiltonian

Hef f 	 HS + ��
�

S����B���� �3.22�

and where the independence of the subsystem and bath �to
leading order in �� was used to factorize the various corre-
lations into bath and subsystem parts. Since the subsystem
parts now only depend on the isolated subsystem degrees of
freedom, to the extent that they are simple, they can be
evaluated explicitly. Indeed, by using Eq. �3.20� in Eq.
�3.21�, it is easy to see that the system parts can all be ex-
pressed in terms of the two-point Green’s function

G�x1,x2;t� 	 �x1�e−itHS/��x2� �3.23�

and its analytic continuation to imaginary time �or equiva-
lently in terms of the isolated subsystem density matrix and
its analytic continuation to imaginary temperature�.

Note that the reduced equilibrium density matrix to first
order in � is easily shown to be given by

�eq�x1,x2� � �eq
�0��x1,x2� − ���

�

�ÂK�x1,x2�Ŝ�����B����

+ O��2� , �3.24�

where �eq
�0� is the subsystem density matrix for the noninter-

acting system. Since the separation of the Hamiltonian into

subsystem and bath is arbitrary up to additive constants �in
the degrees of freedom of each part�, the terms in �B���� can
be incorporated into the system part—i.e., HS→HS
+���S����B����—which makes the first-order corrections in
�eq and in Eq. �3.21� vanish.

Finally, consider the case where there is a separation of
time scales between the bath and system, specifically where
the correlation times �S
�B and where �S
�� ����2.5
�10−14 s at 300 K�. This last condition allows the Kubo
transforms to be ignored in the subsystem correlation func-
tions, and Eq. �3.21� becomes

��NE�t�
�t

� − iLef f�NE�t� − � �

i�
�2

�
�,��

��
0

� ds

�
�� − s�

��B̂����− i�s�B̂�������A,S���S�����A�

+ �
0

�

dt��B̂K
����t��B̂�������A,S�����A,S�������

� ��NE�t� � �eq
−1�T + O��3� �3.25a�

�− iLef f�NE�t� − � �

i�
�2

�
�,��

��
0

� ds

�
�� − s�

��B̂����− i�s�B̂������S���S����,�NE�t��

+ �
0

�

dt��B̂K
����t��B̂�������A,S�����A,S������

� ��NE�t� � �eq
−1�T� + O��3� , �3.25b�

where T denotes a transpose and where the inverse density
matrix is defined by

�eq�x,x1� � �eq
−1�x1,x�� = ��x − x�� . �3.26�

In addition, the easily proven relations

�A�x1,x2�A�x3,x4�� = ��x1 − x4��eq�x3,x2� �3.27�

and

�A�x1,x2�A�x3,x4��−1 = ��x2 − x3��eq
−1�x4,x1� �3.28�

were used in obtaining Eq. �3.25�.
The quadratic terms are considerably more complicated

and are analyzed in detail in the Appendix. Here only the
final result, when the isolated subsystem energy representa-
tion is used for the �xS�’s and when there is a separation of
time scales �see the discussion before Eq. �3.25a��, is
reported—namely,
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� �

i�
�2

�
�,��

�
0

�

dt��B̂����t��B̂������x5���A�x1,x2�,S����,S�����

��x4�e��x3q���x5,x4
�NE�x3,x5;t��NE�x4,x3;t� , �3.29�

which, given that the commutators are each O���, shows that
the quadratic terms are O��2��. More generally, the qua-
dratic terms vanish when �NE�t� is diagonal in the energy
representation—e.g., as it is in equilibrium to leading order
in �. In addition, note that there are several transient qua-
dratic terms that vanish on the �B time scale �cf. Eq. �A9��
that have been omitted.

IV. DISCUSSION

Perhaps the most interesting result of this work is the
fundamental difference between quantum and classical sys-
tems; namely, given the form of the initial distribution, in
general, the reduced equations of motion are exactly linear
for the classical systems, but are nonlinear for quantum ones.
These quantum-mechanical nonlinearities do not seem to
arise in the projection operator methods �4–11�. They would
arise from the average of the random noise term which is
either thrown out �arguing that it would decay on a fast time
scale� or vanishes for the special choices of projection op-
erator and initial distribution. To be sure �cf. the Appendix�,
some of the nonlinear terms are clearly transient �assuming
the bath dynamics is fast�, but some seem to persist. They are
second order in couplings between system and bath and O���
and in part stem from the nonseparability of the full distri-
bution function �both initially and as time progresses� into
bath and system parts. Classically, since everything com-
mutes, this this is not an issue, but is one quantum mechani-
cally.

At first glance this result may appear to be strange from
several points of view. For example, there are many ex-
amples of classical nonlinear reduced equations of motion
�e.g., the classical Boltzmann equation is one�, so why do the
nonlinearities drop out classically? Of course, the derivations
presented here were largely formal, and physical consider-
ations can easily lead to nonlinearities, even classically.

For example, it was shown some time ago �21� that all
slow variables must be included in the initial distribution
function when choosing the variables that describe the re-
duced problem. If not, then differences between the real ini-
tial distribution function and the form assumed by Eq. �1.5�
will not decay. This is a key difference between projection
operator identities for equilibrium time correlation functions
and a nonequilibrium averages. Here, as is well known, this
means that minimally the densities of conserved collective
variables should have been included and it is easy to see that
that this will result in nonlinear terms in the classical reduced
equations of motion �e.g., by using the techniques of Ref.
�17��. Nonetheless, to the extent that the bath remains ap-
proximately at equilibrium �e.g., when the subsystem is

weakly coupled or very dilute�, these extra terms will drop
out.

In a similar, albeit more trivial, vein, in a dilute gas, to the
extent that pair interactions are important it is reasonable that
at least a two-particle subspace be considered �so that aver-
age properties of the pair potentials arise�. Nonlinear equa-
tions will be obtained by writing the two-particle reduced
distribution function as a product of one-particle ones plus a
two-particle variance. Indeed, the classic microscopic deriva-
tions of the Boltzmann equation typically start with the
BBGKY hierarchy, which is linear, but in which the pair
distribution function arises naturally �1�. In any event, while
the effects discussed in this and the preceding paragraph can
lead to nonlinearities, they will do so for both quantum and
classical systems, and are not the origin of the quadratic
terms found here.

As was mentioned above, each of the terms in the exact
equations of motion—i.e., Eqs. �2.18� �classically� or �3.13�
�quantum mechanically�—vanishes separately at equilib-
rium. Not surprisingly, this is only true to the order of per-
turbation theory used in the weak-coupling expansion. None-
theless, this property can be restored by using a �AK�t�A�−1

that still satisfies Eq. �3.8�, etc., in the approximate equations
of motion.

As was mentioned in the Introduction, earlier works have
largely been based on projection operator methods. In this
approach, the equations of motion naturally arise as memory
equations. Here, no a priori assumptions were made about a
projection operator, even though they arise naturally in the
course of the derivation. Since the derivation was carried out
in the time representation, it is not surprising that the projec-
tion operator of the form given in Ref. �15� arises, but none-
theless, the real underlying assumptions of the calculation
were that a closed phenomenological set of equations of mo-
tion for the averages �perhaps with time-dependent coeffi-
cients� exists and that it does not depend on the precise de-
tails of the initial distribution function, at least for times
longer than the bath correlation times. Clearly, it is very un-
likely that any real experiment has an initial full distribution
corresponding to any of the model distributions assumed in
the literature, and if the details matter, it is highly unlikely
that a general reduced equation of motion exists.
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APPENDIX: THE QUADRATIC TERMS

By noting that �Ḃ‡�t��=0 and that �ḂK
‡ �t�A�=0, it is easy

to show that
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�
0

1

ds�
s

1

ds���B‡�t�A�i��s�A�i��s����

= �
0

� ds

�
�

s

� ds�

�
�B‡�t�A�i�s�A�i�s��� . �A1�

With this, taking B= Ȧ, using the invariance of the trace un-
der cyclic permutation of the arguments, writing

A�i�s� = A�0� + i��
0

s

ds1Ȧ�i�s1� ,

and rearranging the orders of integration, it follows that

�
0

� ds

�
�

s

� ds�

�
�Ȧ‡�t�A�i�s�A�i�s���

=
i�

2�2�
0

�

ds��
0

�−s

ds��� − s − s���Ȧ‡�t − i�s�

�AȦ�i�s��� − �
−s

0

ds�s��Ȧ‡�t − i�s�Ȧ�i�s��A�� ,

�A2�

which shows that the quadratic terms are intrinsically quan-
tum mechanical �i.e., O���� and at least second order in
subsystem-bath coupling �cf. Eq. �3.20��. In order to see the

leading-order behavior of this term, Eq. �3.10�, for B= Ȧ, is
solved formally for A�t�—i.e.,

A�t� = G�t;0� � A�0� + �
0

t

ds G�t;s� � Ȧ‡�s� , �A3�

where

G�t;s� 	 �AK�t�A� � �AK�s�A�−1 �A4�

is a Green’s function. This result is used to rewrite Eq. �A1�
as

�
0

� ds

�
�

s

� ds�

�
�Ȧ‡�t�A�i�s�A�i�s���

= �
0

� ds

�
�

s

� ds�

� ��Ȧ‡�t�AA� *
*GT�i�s�;0�GT�i�s;0�

+ i��
0

s

ds��Ȧ‡�t�Ȧ‡�i�s��A� *
*GT�i�s�;0�GT�i�s;i�s��

+ i��
0

s�
ds��Ȧ‡�t�AȦ‡�i�s��� *

*GT�i�s�;i�s��

�GT�i�s�;0� − �2�
0

s

ds��
0

s�
ds��Ȧ‡�t�Ȧ‡�i�s��

�Ȧ‡�i�s��� *
*GT�i�s�;i�s��GT�i�s;i�s��� . �A5�

Equation �3.20� implies that the middle two terms on the
right are explicitly O��2�, while the last one is O��3� �or
O��4� if the odd order moments of B��� vanish�. The first
term is more slightly more complicated.

First, note that

�Ȧ‡�x1,x2;t�A�x3,x4�A�x5,x6�� = ��x3 − x6�

��Ȧ‡�x1,x2;t�A�x5,x4�� �A6�

�cf. Eq. �1.4b��. By using Eq. �3.18� it follows that

�Ȧ‡�t�A� � − ��
0

�

ds�Ȧ0
‡�t�Ae−sH0HS,BesH0� � �1 − �AK�t�A�−1 � �A�t�A�� +

�

i�
�

0

t

dt���Ȧ‡�t�,t�,HS,B�A�t� − t�� � �1

− �AK�t�A�−1 � �A�t�A�� + ��
0

� ds

�
�

0

s

ds���Ȧ‡�t − i�s�,t�,HS,B�A„i��s − s��…� � �AK�t�A�−1 � �A�t�A�, + O��3� ,

�A7�

where 1 is the identity operator,

B‡�t�,t� 	 B�t�� − �BK�t�A� � �AK�t�A�−1 � A�t�� , �A8�

and where all averages and dynamics are computed for the uncoupled system �i.e., for �=0�.
When the separable form of HS,B �cf. Eq. �2.22�� is used, it follows that Ȧ‡�t� , t�= Ȧ0

‡�t�� �cf. Eq. �3.20��, which, together
with Eqs. �A6� and �A7�, allows the quadratic terms, Eq. �A5�, to be rewritten as
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�
0

� ds

�
�

s

� ds�

�
�Ȧ‡�t�A�i�s�A�i�s���

�
�2

i�
�
�,��

��− �

0

�

ds�B̂����t − i�s�B̂�������Ȧ,S�����t�Ae−sH0S����esH0�

+
1

i�
�

0

t

dt��B̂����t��B̂��������A,S�����t��,S�����A�t� − t��� � �1 − �AK�t�A�−1 � �A�t�A��

+ �
0

� ds

�
�

0

s

ds��B̂����t − i�s��B̂��������A�t − i�s�,t�,S����,S�����A„i��s − s��…� � �AK�t�A�−1 � �A�t�A��
x1,x2;x5,x4

���x3 − x6� *
*�

0

� ds�

�
GT�i�s�;0��

0

s ds

�
GT�i�s;0�

+ �
0

� ds

�
�

s

� ds�

� ���
0

s

ds��B̂����t − i�s��B̂��������A,S������t���A,S�������i�s��A� *
*GT�i�s�;0�GT�i�s;i�s��

+ �
0

s�
ds��B̂����t − i�s��B̂��������A,S������t�A��A,S�������i�s��� *

*GT�i�s�;i�s��GT�i�s;0���
 + O��3� . �A9�

This expression simplifies where there is a separation of time scales between bath and subsystem degrees of freedom—i.e.,

when the B̂��� correlations decorrelate on a time scale �B��S. In this case �assuming the integrations in complex time do not
change the correlation times significantly�, all but one of the terms in Eq. �A9� will vanish on the �B time scale. What remains
can be written as

�
0

� ds

�
�

s

� ds�

�
�Ȧ‡�t�A�i�s�A�i�s��� � � �

i�
�2

�
�,��

�
0

�

dt��B̂����t��B̂���������A,S����,S�����A�− t�� � �1

− �AK�t�A�−1 � �A�t�A���x1,x2;x5,x4
��x3 − x6� *

*�
0

� ds�

�
GT�i�s�;0��

0

s� ds

�
GT�i�s;0� .

�A10�

When Eq. �A10� is used for the quadratic terms in Eq. �3.13�, these become

� �

i�
�2

�
�,��

�
0

�

dt��B̂����t��B̂���������A,S����,S�����A�− t�� � �1 − �AK�t�A�−1 � �A�t�A���x1,x2;x5,x4 *
*�

0

� ds�

�
�GT�i�s�;0�

� �AK�t�A�−1 � �NE�t��x5,x3�
0

s� ds

�
�GT�i�s;0� � �AK�t�A�−1 � �NE�t��x3,x4

, �A11�

where the �’s imply that all repeated x’s are integrated or
summed. To proceed, remember that all time correlation
functions are for the uncoupled system; as such, it is useful
to evaluate Eq. �A11� in the energy representation—i.e.,
where

HS�x� = �x�x� . �A12�

In this representation it is easily shown that

�A�x1,x2;t�A�x3,x4�� = �x1,x4
�x2,x3

e−i�x1,x2
t e

−��x2

q
,

�A13a�

�AK�x1,x2;t�A�x3,x4�� = �x1,x4
�x2,x3

e−i�x1,x2
t e

−��x2

q

� �1 − e−���x1,x2

���x1,x2

� , �A13b�

�AK�x1,x2;t�A�x3,x4��−1 = �x1,x4
�x2,x3

e−i�x1,x2
te��x1q

� � ���x2,x1

1 − e−���x2,x1

� , �A13c�
and

G�t;s�x1,x2;x3,x4
= �x1,x3

�x2,x4
e−i�x1,x2

�t−s�, �A13d�
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where �i,j is a Kronecker delta �or � function if the eigenspectrum is continuous�, �i,j 	��i−� j� /� is the transition frequency
between states i and j, and q is the canonical partition function for the isolated subsystem. By using Eqs. �A13a�–�A13d� and
�A11� becomes

� �

i�
�2

�
�,��

�
0

�

dt��B̂����t��B̂������x5���A�x1,x2�,S����,S������x4�e��x3q

�
�e���x5,x4 − 1 − ���x5,x4

�����x5,x3
e���x5,x4 − ���x5,x4

e���x5,x3 + ���x3,x4
�

���x5,x4
�e���x3,x4 − 1��e���x5,x3 − 1��e���x5,x4 − 1�

�NE�x3,x5;t��NE�x4,x3;t� , �A14�

where repeated indices are summed �or integrated�. In the semiclassical limit—i.e., when ����1—Eq. �A14� reduces to
Eq. �3.29�.
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